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This is the second draft of the outline of a report describing the comparison of various pQCD
based formalisms treating the energy loss of hard partons in a thermal quark-gluon plasma for a
simplified geometry. Specifically, we compare the predictions of the WHDG and ASW, and Higher
Twist (HT) formalisms in the opacity expansion, and of the BDMPS–Z and AMY formalisms in the
multiple soft scattering approximation.

I. INTRODUCTION

Jet quenching was among the most spectacular experi-
mental discoveries at the Relativistic Heavy Ion Collider
(RHIC). Leading hadrons are suppressed by a factor 4−5
in central Au+Au collisions at

√
sNN = 200 GeV com-

pared with the expectations from binary collision extrap-
olated proton-proton collisions at the same energy [2, 3].
Most generally, the notion ’jet quenching’ refers to this
generic and strong suppression of hadronic spectra, to a
class of related jet-like hadron correlations, and to the
medium-modification of jets produced by hard parton-
parton interactions in highly energetic collisions of large
nuclei. Data from the RHIC heavy ion program strongly
support the picture that jet quenching is caused by the
loss of energy of the primary parton, either by collisions
with constituents of the medium (collisional or elastic
energy loss [4, 5]) or by gluon bremsstrahlung (radiative
or inelastic energy loss [6–8]), prior to hadronization in
the vacuum. The loss of energy suffered by an energetic
quark or gluon penetrating a QCD medium probes dy-
namical properties of the medium. Therefore, jet quench-
ing is a tool for studying the properties of the hot and
dense matter produced in heavy ion collisions.

In recent years, there has been a significant number
of efforts to formulate dynamical models of jet quench-
ing, to compare these models to the jet quenching sig-
natures measured at RHIC, and to constrain in this way
information about medium properties. Direct compar-
isons of the various models show large quantitative dif-
ferences between the medium density that is needed to
describe the measurements [39]. The full modeling of jet
quenching in heavy ion collisions contains a large num-
ber of steps, such as the initial production spectrum, a
time-dependent medium density profile, and fragmenta-
tion, which makes it difficult to isolate specific differences
between the energy loss formalisms. In this paper, we re-
view the the current state of the art of jet quenching
models, including a discussion of their theoretical foun-
dations and limitations, their kinematic region of applic-
cability, as well as various model-dependent sources of
uncertainty. In addition, we provide a systematic quan-
titative comparison of energy loss formalisms using a spe-
cific model problem: the energy loss of light quarks in a
medium of constant density, a QGP brick. Need some
discussion of where this leads. Will we have some

specific conclusions about what the main causes
of the quantitative differences are? Or at least
some of the driving limitations/uncertainties of
the current approaches (large angle radiation ?).

Our report is organized as follows: The first section
provides an executive summary of our main findings, with
particular emphasis on common features, technical and
conceptual differences and uncertainties of different jet
quenching models. This section is a self-contained nar-
rative with short introduction to the different classes of
jet quenching models. It is written to be easily readable
by the generally interested reader. To maintain maximal
readability despite the often technical nature of the sub-
ject, this executive summary will refer to the following
sections for more detailed arguments supporting the main
statements. The following sections will then provide de-
tailed explanation and numerical studies of different jet
quenching models, and their cross comparison.

II. EXECUTIVE SUMMARY

A. Jet quenching is caused by parton energy loss

Before discussing how jets and high-pT hadrons are
modified due to the hot and dense QCD matter pro-
duced in heavy ion collisions, we shortly recall pertinent
features of their production in the absence of medium
effects. In elementary collisions (e+e− or p p or pp̄), our
understanding of hadron production at high transverse
momentum is relatively mature. Hadron production re-
sults from partonic high-momentum transfer processes
that can be described with controlled uncertainty as a
factorized convolution of incoming parton distribution
functions, a hard partonic collision process, and the frag-
mentation of the partonic final state. In ultra-relativistic
heavy ion collisions, there is no firm theoretical argument
that production cross sections factorize. Rather, factor-
ization is a working assumption that is consistent with
phenomenological analyses made so far and that under-
lies all model studies discussed in this report. General
considerations indicate that if factorization is assumed,
the hard partonic interaction itself cannot be modified
by the medium, since it occurs on temporal and spatial
scales too short to be resolved by the medium. However,
both the incoming parton distribution functions (pdfs),
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as well as the fragmentation of outgoing partons can de-
pend on the medium.

We know with certainty that jet quenching receives its
main contribution on the level of the outgoing fragment-
ing parton. This follows from several lines of argument.
In particular, high-pT observables that by construction
cannot be modified by a medium in the final state, do not
show the large suppressions characteristic for jet quench-
ing. This is so for the transverse momentum spectra of
photons, and for the transverse momentum spectra of
hadrons in deuteron-gold collisions. Moreover, there are
by now several global pdf fits that parametrize the nu-
clear dependence of incoming parton distribution func-
tions. For the typical momentum fractions x and virtu-
alities Q relevant for hard processes, these npdf-fits show
typical nuclear modifications of the order of 10-30 % that
cannot account for the observed factor 4-5 suppression of
single inclusive hadron spectra. Therefore, the energy
degradation observed in nucleus-nucleus collision for all
hadronic high transverse momentum spectra must be due
to dynamical effects occurring after the hard process (’fi-
nal state effects’).

Furthermore, there is strong experimental evidence
that the final state effect responsible for jet quenching is
of partonic nature, i.e., that it occurs prior to hadroniza-
tion. In particular, existing data do not show any ev-
idence that the characteristically different nuclear ’ab-
sorption’ cross sections of different hadron species play
a role in understanding the jet quenching effect. In ad-
dition, since hadron formation times are Lorentz dilated
in the lab frame, one expects on general grounds that
with increasing pT hadronic effects occur at larger dis-
tances from the production point, and should thus be
located outside a finite size medium for sufficiently large
pT . That the jet quenching suppression occurs with ap-
proximately equal strength for all pT thus points to a
partonic origin of the effect.

As a consequence of these generic observations, all
current efforts to understand and simulate jet quench-
ing are based on models of parton energy loss. Fur-
ther progress then depends on promoting the relation be-
tween jet quenching phenomenology and parton energy
loss from a qualitative to a more and more quantitative
one. To this end, we embark in the following on a critical
assessment of current parton energy loss models.

BM: Need a short discussion on radiative vs elastic e-
loss

B. Models of radiative parton energy loss

A basic parton branching process within a medium
of finite size L is depicted in Fig. 1. Calculations of
radiative parton energy loss aim at determining such
processes within the framework of perturbative QCD.
All approaches studied so far involve significant assump-
tions and approximations about i) the virtuality and (re-
peated) branching of the hard parton, ii) the nature of

FIG. 1: In a hard parton-parton interactions (denoted by the
grey blob), highly energetic partons can be produced. Sub-
sequently, these partons undergo parton branching processes.
In a heavy ion collision, this parton evolution occurs within a
dense medium (blue area) that interfers with the vacuum evo-
lution via a priori unknown elastic or inelastic interactions.

the medium through which the energetic parton propa-
gates, and iii) kinematical approximations for the interac-
tion between medium and projectile parton. We will first
provide a short general discussion of in-medium QCD ra-
diation, before turning to the specific implementations.

1. Virtuality and parton branching in the medium

A high-pT parton, produced by a hard initial colli-
sion between incoming partongs, carries initially a high
virtuality. Even in the absence of a medium, the par-
ton will undergo ’vacuum’ splitting processes to reduce
its off-shellness. A typical first parton splitting process
after production is sketched in Fig. 1. If occurring in
medium, the question arises whether this parton split-
ting is just the same as in the vacuum, or rather an addi-
tional medium-induced splitting, or a result of the inter-
ference between medium-induced effects and a dynamics
that would also occur in the absence of a medium. None
of the existing parton energy loss calculations treats the
entire dynamics depicted in Fig. 1 in a field theoretically
rigorous fashion. Models of parton energy loss differ in
the way in which they interface vacuum splittings and
medium effects.

The medium effect on parton splitting is brought about
by interactions of the high-energy parton and the radi-
ated gluon with the medium. For small-angle scattering,
the parton and the radiated gluon propagate along sim-
ilar paths, leading to significant interference and a finite
formation time of the gluon, which suppresses the gluon
radiation compared to incoherent emission. This effect
is often referred to as the Landau-Pomeranchuk-Migdal
effect. The size of the effect depends on the kinematics of
the radiation and the path length L through the medium.
A characteristic consequence of this interference is that
the amount of energy loss grows quadratically with L
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for in-medium path lengths that are small compared to
the formation time. In the theoretical models this effect
arises naturally from the calculation of multiple scatter-
ing of the radiated gluon and the parent parton in the
medium (Is this correct? Better phrasing possible?).

In general, multiple splittings may occur in the
medium. A full calculation of multi-gluon final states
would include interference terms between the different
emitted gluons. However, because such calculations are
extremely hard to perform, the current calculations are
all based on repeated application of a single-gluon emis-
sion calculation. In the following we will separately dis-
cuss the single-gluon radiation kernel and the prescrip-
tion used for multiple gluon emission.

2. Modeling the medium

The main interest in studying jet quenching is to use it
to characterize the medium through which the projectile
parton propagates. In principle, it is of interest to im-
plement different models of the medium in jet quenching
calculations, since this may help to discriminate between
different pictures of the medium and its properties. In
the current practice, each model description uses a par-
ticular set of simplifications, which can be classified as
follows:

1. The medium is modeled as a collection of static
scattering centers
In this approach, the medium is modeled as a set
of static colored scattering centers with some den-
sity distribution along the trajectory of the pro-
jectile. A decreasing density can accommodate the
physics of an expanding medium. In a strict techni-
cal sense, calculations in this set-up lead to gauge-
invariant (i.e. physically meaningful) results only
to leading order in a high-energy approximation.
By construction this set-up neglects recoil effects
and thus does not allow for elastic parton energy
loss.

This medium model is the basis of two different
calculational approaches. The multiple soft scatter-
ing approach was pioneered by Baier, Dokshitzer,
Mueller, Peigné and Schiff [7, 12] (BDMPS) and
independently by Zakharov [11]. Gluon radiation
is formulated in a path-integral that resums scat-
terings on multiple static colored scattering centers.
Wiedemann [19] showed how this path-integral can
be used to include the interference between vacuum
and medium-induced radiation. Numerical evalu-
ations of the path-integral employ a saddle point
approximation that amounts effectively to assum-
ing that the projectile interacts with the medium
via multiple soft scattering processes. In the totally
coherent limit, in which the entire medium acts co-
herently towards gluon production, the BDMPS-Z
formalism results in a radiation spectrum that is a

radiation term for gluon production with momen-
tum transfer q⊥ convoluted with a Gaussian elas-
tic scattering cross section ∝ 1

q̂ L exp
[
−q2

⊥/q̂ L
]
.

In this limit, the medium is fully characterised
by the transport coefficient q̂, the mean of the
squared transverse momentum exchanged per unit
path length.

The opacity expansion was pioneered by Gyulassy,
Levai and Vitev [15, 16] (GLV) and independently
by Wiedemann REF. It also includes the interfer-
ence between vacuum and medium-induced radia-
tion and is based on a systematic expansion of the
calculation in terms of the number of scatterings.
In most existing calculations, only the leading term
(N = 1) is included, but the behaviour for larger
opacities has been explored in [GV, Wicks]. The
medium is characterised by two model parameters,
the density of scattering centers n or mean free path
λ, and a Debye screening mass µD used to regulate
the infrared behavior of the single scattering cross
section. In contrast to the multiple soft scatter-
ing approximation, this approach allows for larger
momentum transfers from single scattering centers.
There are several model implementations in the lit-
erature that differ significantly in their kinematic
approximations. We refer to them as ASW-OE and
WHDG [18], and we discuss these differences in de-
tail in Section III B.

2. The medium is characterized by matrix elements of
gauge field operators
In principle, multiple gluon exchanges between
a partonic projectile and a spatially extended
medium can be formulated in a field theoretically
rigorous fashion by describing the medium in terms
of expectation values of 2-, 4-, 6-, 8-, ... field corre-
lation functions. Energy loss calculations based on
the higher-twist (HT) approach were pioneered by
Guo and Wang [21, 22]. The approach includes the
interference between vacuum and medium-induced
radiation. Properties of the medium enter the cal-
culation in terms of higher-twist matrix elements.
In practice the matrix elements are factorized in
the npdf and matrix elements describing the inter-
action between final state partons and the medium.
This factorization is valid at leading order in the
path length L in the medium. As we discuss in
some detail in section xx, the approximations cur-
rently employed, result in a formulation of parton
energy loss calculations that closely resembles mod-
els starting from a set of static scattering centers.

3. The medium as a thermal heat bath
The formulation of parton energy loss within a
field-theoretically rigorous defined medium in per-
fect thermal equilibrium is obviously of great rele-
vance for heavy ion physics. This approach was pi-
oneered by Arnold, Moore and Jaffe [13, 14] (AMY)
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for a weakly coupled medium. The medium is for-
mulated as a thermal equilibrium state in Hard
Thermal Loop improved finite temperature pertur-
bation theory. As a consequence, all properties
of the medium are specified fully by its temper-
ature and baryon chemical potential. The calcu-
lation does not incorporate vacuum branching of
the projectile parton. In principle, the perturbative
description of the thermal medium applies only at
very high temperature T � Tc.

As seen from the list above, different models of parton
energy loss characterize the medium in terms of different
primary model parameters. In the existing literature,
the different approximations used for the medium in the
various approaches have led to different ways to specify
the medium properties. Recently it has become custom-
ary to translate the primary model parameters into an
effective q̂, that has the physical interpretation of an av-
eraged squared momentum transfer per unit path length
q̂ = 〈q2

⊥〉/λ. The transport coefficient can be calculated
from the differential scattering cross section dσ/d2q⊥ or
the rate dΓel/d2q⊥:

q̂ = ρ

∫
d2qT q2

T

dσ

d2qT
=
∫

d2q⊥ q2
T

dΓel

d2q⊥
(1)

In this paper, we will use a common approach to calculate
q̂, using rates from Hard Thermal Loop (HTL) field the-
ory. The basic parameters in the opacity expansion are
the screening length µD and the mean free path λ, which
can also be calcaluted in HTL. For details, see section
III A.

Formally, the Higher Twist (HT) formalism encodes
the scattering power of the medium into a nonpertur-
bative matrix element of the gauge field strength tensor
F a

µν . In light-cone coordinates, this matrix element is
given by:

q̂ =
4πCRαs

N2
c − 1

∫
dy−

〈
F ai+(0)F a+

i (y−)
〉
eiξp+y− , (2)

which measures the transversely acting force due to gluon
fields in the medium [? ]. However, in practice approxi-
mations are made, such as neglecting the Q2 dependence
of the correlator in Eq. 2, such that the Higher Twist
formalism uses directly the transport coefficient q̂. (Or
rather µ2/λ – Need to clarify with Xin-Nian)

MvL: Do we need an additional note here to stress that
since the medium models are different, it is not com-
pletely obvious how to compare them – or rather, that this
is part of the interest of the exercise: some medium mod-
els may be more appliccable to heavy ion collisions than
others. See also the relevant point the conclusions. BM:
qhat is the only relevant parameter for static scattering
centers. For other medium models, additional transport
coefficients may be needed to describe the interactions.

FIG. 2: The landscape of pQCD based jet quenching for-
malisms. Arrows indicate pairs of formalisms for which de-
tailed analytical and numerical comparisons are presented.

3. Relation between parton energy loss models

MvL: This section should probably be moved to later
Fig. 2 illustrates the close technical and conceptual

relations between the different models of parton energy
loss. Formally, these relations can be summarized as fol-
lows

1. Multiple soft scattering vs. Opacity expansion
Prior to making the multiple soft scattering expan-
sion, the BDMPS-Z path integral can be expanded
in opacity. On the level of unintegrated cross sec-
tions, the results agree with the opacity expansions
discussed here. Calculations based on opacity ex-
pansion do not assume that all momentum trans-
fers are soft, but require additional kinematic as-
sumptions (e.g. definitions of kinematic integra-
tion boundaries). This leads to significant quanti-
tative and qualitative differences between multiple
soft scattering approximation and opacity expan-
sion.

2. AMY vs. multiple soft scattering approach
Parton energy loss within the AMY formalism can
be formulated in terms of the same path integral
entering BDMPS-Z formalism. The technical com-
monalities between both approaches are further
elaborated in [50] and summarized in section ...
On the other hand, both formalisms take signifi-
cantly different starting points in how the medium
is and the projectile is formulated (see above). can
we say more? Is there a well-defined sense
in which we can state that these formalisms
are equivalent? The above points only to
analogies and differences.

3. Opacity expansions: WHDG vs. ASW-OE
These opacity expansions calculate the same set
of multiple scattering Feynman diagrams within
the same high-energy and collinear approximation.
However, in extending this result from the kine-
matic region in which these approximations are
valid to the entire phase space open for gluon pro-
duction, they take different approximations. We
shall discuss the resulting significant numerical dif-
ferences in detail below, since they allow us to il-
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lustrate the technical origin of one major source of
current theoretical uncertainties.

4. HT versus opacity expansion
The Higher Twist formalisms and the (N =
1) Opacity expansion are closely related at the
level of the single-gluon emission kernel, but dif-
fer significantly in the way multiple-gluon emis-
sion is treated. The Higher Twist calculation uses
DGLAP virtuality evolution, while in the Opacity
Expansion, multiple gluon emission is described us-
ing Poisson distributed independent emissions (see
next Section). what can we say precisely about
this relation? Could Xin-Nian or Abhijit
give a few-line-summary BM: Is there a Poisson
analogy for DGLAP/HT ?

4. Kinematic approximations in different parton energy
loss models

With regard to the technical approximations employed
in parton energy loss calculations, the four model classes
show important commonalities, but display also charac-
teristic differences.

The three main assumptions that are made in all the
calculations are

• Both the parton and the radiated gluon (?) are on
an eikonal trajectory: E � q⊥ and ω � q⊥.

• Small-angle (collinear) radiation ω � kT

• Discrete scattering centers, or some form of lo-
calised momentum transfer: λ � µ.

Since the eikonal approximation is used, one often uses
the additional approximation that the gluon energy is
much smaller than the parton energy ω � E, or x =
ω/E � 1, i.e. the soft radiation approximation.

Let us first consider the kinematic constraints E �
ω � kT , which is often referred to as the soft eikonal
limit. In the calculations, this limit is used for example
to neglect the changes to the parent trajectory due to
multiple scattering, which simplifies the calculations sig-
nificantly. MvL: see also earlier remark that for a static
medium gauge-invariant results can only be obtained in
this approximation; can we explain briefly why that is,
i.e. what we are phsycially neglegting/need to neglegt in
this case?

In phenomenological applications of parton energy
loss, however, gluon radiation is calculated in the en-
tire allowed phase space, up to ω = E and kT = ω,
where the approximations are not valid. The approxima-
tions employed in the current calculations lead to finite
radiation probability at the kinematic bounds ω ≈ E
and kT ≈ ω, thus violating energy-momentum conserva-
tion. Most current formalisms remedy this by imposing
explicit cut-offs at the kinematic bounds. The sensitiv-
ity of the result to large-x and large angle radiation can

be explored to get an impression of the accuracy of the
result. The two limits warrant separate discussions.

Let us first consider the large-x regime, where ω ≈ E.
For all energy loss models, the gluon energy distribution
peaks at a ‘typical’ energy (which may be 0). As a result,
one can always restrict the considerations (and in most
cases the measurement as well) to a reasonably high par-
ton energy for which the calculated rate at x → 1 is small
compared to the total rate, thus giving confidence that
the impact of the cut-off at x = 1 is small. For typical
medium densities at RHIC, the gluon energy ω peaks at
O(1 GeV), so that for parton energies E >∼ 10 GeV, the
probability density at the kinematic boundary becomes
reasonably small.

In the present calculational framework, the yield in the
spectrum for ω > E, i.e. above the kinematical boundary
can be taken as a probability of total absorption of the
parton, ‘death before arrival’. The alternative would be
to simply ignore the probability distribution for ω > E,
but this may lead to a situation where the total radia-
tion probability decreases with increasing density or path
length, when the typical gluon energy is closer to E. This
is clearly not realistic.

The situation is different for large-angle radiation. In
the current calculational frameworks, the typical trans-
verse momentum of the radiated gluon kT depends on
the typical transverse momentum exchanges qT and the
number of scatterings L/λ, but not on the gluon energy
ω. As a result, there is always some radiation with ω
smaller than the typical kT and thus with a large proba-
bility for radiation at kT → ω. The quantitative impact
of large angle radiation depends on the medium model
(large qT contributions in the medium cross section) and
the choice of parameters. A detailed discussion in the
opacity expansion framework in given in Section III B.
Would be good to add a discussion of large-angle
radiation in all sections; if we do that, we can dis-
cuss the conclusions here. E.g. would expect that
AMY and ASW-MS are somewhat less sensitive
than GLV ASW-SH due to the q⊥ tail.

From GLV/WHDG: [MvL: this sounds like a many-
scattering approximation, how does this fit in the opacity
expansion?] In addition, for the opacity expansion,
AMY and BDMPS calculations, it is assumed that the
parent parton pathlength is much longer than the mean
free path of the gluon in medium (L � λ). footnote:
In GLV and BDMPS this is used to neglect poles from
propagators multiplied by exp(−µ∆z) ≈ exp(−µλ) � 1,
where ∆z is the distance between successive scattering
centers; this approach is probably invalid for L <∼ λ ∼
1 fm. On the other hand AMY uses the central limit the-
orem in its Langevin approach and corrections are likely
for L <∼ 30λ ∼ 30 fm; this extra long path length is
also required by the neglect of the interference between
vacuum and in-medium induced radiation.
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C. Multiple gluon emission

Multiple gluon emission is calculated by repeating the
single gluon emission kernel as needed.

The simplest procedure for multiple gluon emission is
the Poisson Ansatz, where the number of emitted glu-
ons follows a Poisson distribution, with the mean number
given by the integral of the gluon emission spectrum, and
each gluon has the energy distribution given by the single
gluon emission kernel. Add equation? This procedure is
used by GLV and ASW. In general, this procedure leads
to a distribution of lost energy that does not conserve en-
ergy as the degrading momentum of the parent parton is
not dynamically updated. Furthermore, because gener-
ally 〈Ng〉 > 1, the convolution almost always pushes the
mean fractional energy loss 〈∆E〉/E to values larger than
the mean value 〈x〉 from the single emission distribution
dNg/dx.

HT and AMY both use a coupled evolution procedure
to calculate multiple gluon emission. In the case of HT,
DGLAP evolution is used, which includes the virtuality
evolution in vacuum. In the AMY approach, the Fokker-
Planck equations are used and no vacuum radiation is
included.

The evolution equations used in HT and AMY both
include the coupling between the quark and gluon distri-
butions in the jets and keep track of the gradual degra-
dation of the jet energy. The emission probability distri-
bution changes as the jet energy degrades. This effect is
not included in the Poisson convolution, where the emis-
sion probability is calculated with the initial jet energy.
In this sense, using evolution equations is a more nat-
ural approach. There is, however, an important point
that is not explicitly addressed in any of the models: as
the energy degrades, the remaining pathlength through
the medium also decreases. So, in principle, the energy-
evolution should be accompanied by a an evolution in co-
ordinate space and the emission probabilities should be
calculated using local information about the parton en-
ergy, the medium, and the remaining pathlength. This
is however difficult in the presence of interference ef-
fects, where the gluon radiation is not a purely local
phenomenon, but instead couples to the parton over a
extended area.

D. Summary of the main findings

The following is meant to provide an outline
for discussion. We have listed the main points
that we think we should comment on, but the
content of the conclusions should be discussed in
the collaboration

We would like to formulate conclusions on the
following topics:

1. Effect of kinematic limits
All formalisms make use (to varying extent?) of

the soft collinear limit E � ω � kT . In phe-
nomenological calculations, we have to extend the
calculations into the large-x, ω → E, and large-
angle domain kT → ω. For sufficiently large par-
ton energies, the uncertainties associated with the
large-x domain seem to be reasonably small (see
GLV/ASW-OE section). Large angle radiation is
expected to be problematic for all models, but so
far we only know in detail what happens for the
opacity expansions (GLV/ASW-SH section), where
the resulting uncertainty is about a factor 2. work
is ongoing to clarify this for AMY (and HT)

2. Effect of including vacuum radiation
All formalisms include vacuum radiation to some
extent, except AMY. In the final comparison, AMY
shows by far the largest suppression at given T or q̂.
Can we conclude that the large suppression in AMY
is due to the lack of vacuum radiation? What about
the other formalisms, can we say more about sim-
ilarities/differences in the way vacuum radiation is
included?

3. Effect of treatment of multiple gluon emission
In the existing formalisms, the calculation the
single-gluon emission kernel and the calculation of
multiple gluon emission are separate steps. The
simplest procedure for multiple gluon emission is
the Poisson ansatz (GLV, ASW-SH and ASW-
MS), followed by the Fokker-Planck rate equations
(AMY) and the DGLAP evolution (HT). Do the
differences in multi-gluon emission pocedure have
a significant observable impact? MvL: From what
I have seen so far, the impact of the multiple gluon
emission procedure on RAA ≈ R7 is small; or
rather, large differences arise at the single-gluon
level and these propagate to the final multi-gluon
result. Does everyone have the same impression?
If so, we should mention it. Other observables
may be more sensitive (any suggestions?). Also
note that in principle, one could use different multi-
gluon prescriptions with any single-gluon emission
model. This might be an interesting exercise to get
a more quantitative assessment of the effect.

4. Effect of medium model. Are all q̂ defined in the
same way?
The different formalisms use different pictures of
the medium. It is not immediately obvious that
one can define a measure of the medium density
which is equivalent for all models. Our defini-
tions of q̂ in Section III A aim to use as a con-
sistent an interpretation of the medium as possi-
ble. However, there are probably still uncertainties
associated with this. One might also argue that
the picture of the medium is in fact the essence of
each model. In that case, we should rather ask to
what extent different medium pictures lead to phys-
ically different outcomes and whether we can decide
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which picture of the medium is correct. MvL: My
impression is that the ‘technical’ differences in kine-
matic cuts and approximations used in the mod-
elling at the moment overwhelm the effect of the
real ‘physics’ in the medium pictures. I realise that
this is a strong statement; is it supported by the
comparisons?

1. Directions for future work

It is clear from the preceding discussion that the cur-
rent energy loss calculations have a number of specific
weaknesses which may have large quantitative impact on
the results. Based on our review of the existing models,
we can formulate a number of questions for future work.

Firstly, we recommend to develop calculations with
better control of the large angle and large energy radi-
ation. In a realistic calculation, the radiation cross sec-
tion should naturally go to zero at the kinematic limits
kT = ω and ω = E. It is most important to control
the large-angle behaviour; the large-energy regime can to
some extent be avoided by concentrating on high-energy
partons/jets. The most natural way to control the large-
angle behaviour of the radiation would be to use Next-
to-Leading Order (NLO) calculations.

The treatments for multiple gluon radiation should
also be further investigated. So far, the treatments are
based on incoherent superposition and/or kT -ordering of
the shower MvL: also angular ordering? . It is worth-
while to quantitatively investigate deviations from these
assumptions. Inclusive observables, such as RAA are
likely to be rather insensitive to details of the shower
evolution. More differential observables may be more
suitable to investigate specific multi-gluon emission sce-
narios.

UW: Can we formulate a set of minimal requirements
for a complete/realistic calculation of radiative energy
loss, à la the Snowmass-accord for jet finding?

III. DETAILED COMPARISONS OF MODELS

A. Common definition of medium properties q̂, µ
and λ

MvL: Not sure where this section should go. The de-
tailed discussion here is a prerequisite for the final com-
parison in Section IV, so we could move it there. How-
ever, it would be good to use the definitions outlined here
also in the individual sections below. In order to com-
pare different energy loss models the relation of the input
parameters with the characteristics of the medium have
to be understood. For the multiple soft scattering ap-
proximation the calculation of the energy loss depends
on the transport coefficient q̂ and length L traversed by
the parton in the medium. The transport coefficient is
defined as the mean momentum kick squared 〈q2

⊥〉 per

mean free path λ:

q̂(qmax) =
∫ qmax

d2q⊥
dΓel

d2q⊥
q2
⊥, (3)

in which Γel is the rate for elastic collisions in the plasma,
q⊥ is the transverse momentum imported by the medium
to the radiated gluon in such a collision and qmax is the
ultraviolet cut-off. From this already can be seen that in
the multiple soft scattering approximation the momen-
tum kick and the mean free path λ cannot be looked
at seperately. The differential scattering cross-section is
known in two different energy limits [23]:

dΓel

d2q⊥
' CR

(2π)2
×


g2Tm2

D

q2
⊥(q2

⊥+m2
D)

if |q⊥| � T

g4N
q4
⊥

if |q⊥| � T ,
(4)

in which T is the temperature of the medium, mD the
Debye mass:

m2
D = (1 +

1
6
Nf )g2T 2, (5)

and N [23] is the colorless density of the medium:

N =
ζ(3)
ζ(2)

(1 +
1
4
Nf )T 3. (6)

The following expression for the differential scattering
cross-section makes the transition from the low energy
limit to the high energy limit smooth:

dΓel

d2q⊥
' CR

(2π)2
× g4N

q2
⊥(q2

⊥ + m2
D)

(7)

In the high energy limit this approaches equation 4 and
it deviates in the soft region due to the difference in the
numerator by 17%. The differential cross-section as func-
tion of q⊥ for the different energy limits is shown in Fig. 3.
The curves labeled with Interpolated correspond to the
expression (7) and the curves labeled Soft correspond to
the low energy limit of Eq. (4).

The calculation of the transport coefficient is now
straightforward using Eqs. (3) and (7), and depends on
the temperature T of the medium:

q̂(T ) =
CRg4N (T )

4π
ln
(

q2
max(T )
m2

D(T )
+ 1
)

. (8)

In the high energy limit the constant in the argument
of the logarithm vanishes but in the low energy limit its
presence is crucial because otherwise unphysical negative
values for q̂ are possible. In a realistic medium created in
a heavy-ion collision naturally both cases will be present.

The value at which qmax should be chosen is pro-
cess dependent. In the high energy limit the cross-
section describes collisions with static scattering centers
as has been argued in [24] and references therein. There-
fore in calculations that will follow the upper limit in
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FIG. 3: Differential elastic cross-section as function of q⊥ for
the different energy limits. The curves labeled with Interpo-
lated correspond to the expression given in Eq. (7). Curves
labeled with Soft correspond to the low energy limit in Eq. (4).

the integral to calculate q̂ in equation 3 will be set at
qmax = g(ET 3)1/4 which means that q̂ not only depends
on the temperature T of the medium but also on the
energy E of the incoming parton, see Fig. 4. The parti-
cles in the plasma are also often approximated as fixed
scattering centers by using for the following diffractive
scattering cross-section:

dΓel

d2q⊥
' CR

(2π)2
× g4N

(q2
⊥ + m2

D)2
. (9)

This is done for analytical convenience. In previous work
the transport coefficient is often calculated using the ap-
proximation 〈q2

⊥〉 ' m2
D:

q̂ ' m2
D

∫ ∞

0

d2q⊥
dΓel

d2q⊥
= m2

DΓel =
m2

D

λ
=

CRg4N
4π

,

(10)
in which the scattering cross-section as given in (9) is
used. In this case the transport coeffcient does not de-
pend on the energy of the incoming parton. In Fig. 4 for
comparison curves for a gluon-gluon and a quark-gluon
gas not depending on the energy of the parton are shown
as well.

In the opacity expansion formalism the particles in the
plasma are also approximated as fixed scatters. This
leads to the following expression for the number of scat-
tering centers encountered by the parton traversing the
medium:

L

λ
= L

∫
d2q⊥

dΓel

d2q⊥
= 4πCRN

α2
s

m2
D

L, (11)

which is the expression for q̂ in equation 10 times L/m2
D.

The number of scattering depends on the temperature
of the medium but not on the energy of the incoming
parton, note also the horizontal lines in figure 4.

FIG. 4: The transport coefficient as function of the energy
of the parton traversing a medium of different tempertures.
The transport coefficient is calculated in the hard thermal
loop formalism as in equation 8.

B. WHDG and ASW–SH

1. Overview

This subsection contains a detailed comparison of the
radiative part of the WHDG calculation [18], equivalent
to the first term in the DGLV opacity expansion [17], and
the ASW formalism truncated to first order in opacity,
here called ASW–SH [20]. We discuss the importance
of the definition of the splitting variable x and of the
kinematic cut-offs made to enforce the assumptions used
in deriving the energy loss formulae. Quantitative re-
sults comparing the radiative and elastic components of
WHDG will also be shown.

2. Single emission kernel

One of the major driving forces of the present investi-
gation was the realization that the approximations and
physics assumptions made to arrive at analytical results
for the medium induced radiation not only have an im-
pact on the predictions of experimental observables such
as RAA but also influence all the modeling assumptions.
An excellent case in point comes when one attempts a
naive comparison between the single inclusive gluon dis-
tribution implemented in a massless quark and gluon ver-
sion of the radiative piece of WHDG and the one found
from the ASW–SH code [25] for the opacity expansion
(see Fig. 1 for a sketch of the perturbative process and
definitions of symbols we will use throughout the sec-
tion). Both purport to compute the single inclusive dis-
tribution of gluon radiation, dNg/dx, to first order in
opacity [15, 16, 19] for a medium of Debye-screened col-
ored static scattering centers [6]. See Fig. 5, which shows
dNDGLV

g /dx and dNASW−SH
g /dx for a nominal 10 GeV

quark jet in a static plasma of length 2 fm and tempera-
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FIG. 5: Plot of the single inclusive gluon radiation distribu-
tion, dNg/dx, from the WHDG implementation of the first
order in opacity DGLV formula, Eq. (12), in red, and the
ASW–SH implementation of Eq. (13), in black, for a 10 GeV
up quark traversing a nominal, 2 fm long static brick of QGP
held at a constant T = 485 MeV. The point at x = 1 indicates
the integrated weight of dNg/dx in the ASW–SH implemen-
tation for x > 1.

ture T = 485 MeV[57].

The DGLV formula for the first order in opacity energy loss is [17]:

x
dNDGLV

g

dx
=

2CRαs

π3

L

λ

∫
d2qd2k

µ2(
q2 + µ2

)2 k · q(k− q)2 − β2q · (k− q)[
(k− q)2 + β2

]2(
k2 + β2

) ∫
dz

[
1− cos

(
(k− q)2 + β2

2xE
z

)]
ρ(z).

(12)
Here mg and Mq are the effective thermal mass of the radiated gluon and the mass of the parent parton, respectively,
β2 = m2

g + x2M2
q , and ρ(z) is the probability distribution for the distance to the first scattering center. (In general

one needs to consider the distribution in differences in distance between successive scattering centers. However at
first order in opacity there is only one scattering center; as one may always set the initial value of z to 0, ρ(z) is the
absolute distance to the first scattering center.) The equivalent expression for ASW–SH, which does not include the
effect of a thermal gluon mass mg, is [20]:

ω
dIASW−SH

dω
=

2CRαs

π3

L

λ

∫
d2qd2k

µ2

(q2 + µ2)2
k · q(k− q)2 − x2M2

q q · (k− q)[
(k− q)2 + x2M2

q

]2(
k2 + x2M2

q

)
×
∫

dz

[
1− cos

(
(k− q)2 + x2M2

q

2ω

)]
ρ(z). (13)

If we set ω = xE in (13) and mg = 0 in β in (12), then
we see that Eqs. (12) and (13) are, in fact, identical.
Why, then, do the curves obtained by evaluating these
expressions, shown in Fig. 5, differ so drastically? The
answer lies in the details of the implementation of these
two expressions. It turns out that there are a number of
choices that must be made in going from the differential
expressions for the radiation spectrum to the integrated
gluon distribution, dNg/dx. These are summarized in
Table I.

If one alters the radiative energy loss part of WHDG
to adopt all the assumptions used in the ASW–SH code,
then one finds agreement within numerical precision, as
shown in the top left plot of Fig. 6. This corresponds to

WHDG ASW–SH

kmax 2x(1− x)E xE

x x+ xE

qmax

√
3µE ∞

ρ(z) 2e−2z/Lθ(z)/L θ(L− z)θ(z)/L

L/λ Lρσ = Lρ× 9πα2
s/(2µ2) 1

αs 0.3 1/3

mg; Mq µ/
√

2; µ/2 0; 0

TABLE I: Table of differences between the implementations
of Eqs. (12) and (13) in WHDG and in ASW–SH.
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the choices:

• thermal gluon mass mg = 0;

• thermal quark mass Mq = 0;

• use of kmax = xE for the maximum allowed value
of kT = |k|;

• use of the same scattering center distribution as in
ASW;

• gluon mean free path λ/L = 1;

• maximum momentum transfer qmax = ∞;

• QCD coupling constant αs = 1/3.

Figs. 6 and 7 show the quantitative progression from ex-
act agreement, when these common choices are made, to
the disparate results shown in Fig. 5. The progression
systematically removes the changes given in the above
list in reverse order.

There are numerous lessons to be learned from Figs. 6
and 7. That the changes in αs, Mq, and qmax lead to
small differences in dNg/dx is not surprising: αs dif-
fers by only 10% between the implementations; Mq for
WHDG is small compared to the jet energy; and it has
been known for a long time that dNg/dx is not sensitive
to changes in qmax. Also not surprising is the huge dif-
ference when L/λ is allowed to vary. While at the level
of dNg/dx one can simply scale the results to account for
a varying L/λ, this is not true once the distribution has
been folded multiple times into a Poisson convolution;
note that the ASW–SH code [25] only gives the Poisson
convolution results. The differences seen in the dNg/dx
from the two scattering center distributions seems to sug-
gest only a small dependence on their exact form. The
apparent huge sensitivity to the inclusion of a radiated
gluon mass mg, however, is a surprise. On the other
hand, due to nontrivial interference effects, its effect on
observables such as RAA is actually not very large [26].

3. Definition of the variable x

The very large changes seen when going from iden-
tical to numerically different kmax values (see top right
panel of Fig. 7) is a surprise given the assumption of
collinearity used in the derivation of the energy loss for-
mulae, Eqs. (12) and (13). This result warrants further
explanation. Collinearity, kT � xE, is the assumption
that radiation is emitted at small angles. To further in-
vestigate the meaning of collinearity, it is necessary to
discuss the specific definition of the splitting fraction x.
As noted in Table I, the GLV-descended derivations [15–
17, 27] interpret x = x+ = k+/P+ as the fraction of
positive light-cone momentum carried away by the ra-
diated gluon. The ASW–SH derivation [19, 20] defined
x = xE = k0/P 0 as the fraction of energy carried away by
the radiated gluon. If we denote the usual four-momenta
with parentheses and light-cone momenta with brackets

then the radiated gluon four-momentum is

k =
(
xEE,

√
(xEE)2 − k2,k

)
=
(

x+E+,
k2

x+E+
,k
)

, (14)

where k is the momentum of the gluon transverse to the
direction of the parent parton and the gluon is assumed to
be on mass shell. Similarly, the momentum for a massless
parent parton is

p =
(

(1− xE)E,

√(
(1− xE)E

)2 − (q− k
)2

,q− k
)

=
(

(1− x+)E+,
(q− k)2

(1− x+)E+
,q− k

)
, (15)

where q is the transverse momentum transfer to the par-
ent parton from the scattering center. For completeness
the original parent parton momentum is P = (E,E,0) =
[E+, 0,0]. Using Eqs. (14) and (15) one may derive the
exact relationships between x+ and xE:

x+ =
1
2

xE

1 +

√
1−

(
kT

xEE

)2
 , (16)

xE = x+

(
1 +

(
kT

x+E+

)2
)

, (17)

Note that to lowest order in the expansion parameter is
kT /xE, which controls the extent of collinearity, the two
definitions of x are identical.

4. Collinearity violation and cut-off dependence

Maybe separate subsection?

A number of simplifying assumptions are made in the
process of deriving Eqs. (12) and (13). Specifically, one
assumes: (1) eikonality (E � |q|); (2) soft radiation
(x � 1); (3) collinearity (kT � xE); (4) parent par-
ton pathlength much longer than the mean free path of
the gluon in medium (L � λ). The same assumptions
are also made in the BDMPS and AMY formalisms [58].
The HT formalism also makes these assumptions, except
for (2). It is worth emphasizing that all current pQCD-
based energy loss calculations make the assumption of
collinearity.

A simple examination of Eqs. (12) and (13) shows that
these equations are sensitive to the violation of the as-
sumptions made in their derivation; they do not naturally
die out when the approximations used in their derivation
break down. As one example, the integrands have sup-
port for all kT . Collinearity has traditionally been en-
forced through the requirement of forward emission, by
cutting off the kT integration for dNg/dx in the ultravi-
olet. In light-cone coordinates forward emission implies
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FIG. 6: First half of the progression from ASW–SH to the radiative piece of WHDG. The black curve in all figures represents
ASW–SH. The red curve in each figure represents the result when the next progressive change away from WHDG is removed.
To aid comparison, the result from the previous plot is shown in blue. Dots at x = 1 represent the integrated weight of dNg/dx
for x > 1. Progression proceeds as follows: (Top Left) exact reproduction of ASW–SH (within numerical precision); (Top Right)
αs = 1/3 to αs = 0.3; (Bottom Left) qmax = ∞ to qmax =

√
3µE; (Bottom Right) L/λ = 1 to L/λ = Lρσ = 9πα2

sρL/(2µ2).

that k+ > k−. This condition implies

kT < kmax = x+P+ = x+E+. (18)

In Minkowski coordinates forward emission implies that
kz > 0. This condition implies

kT < kmax = xEE. (19)

However, requiring forward emission only restricts emis-
sion to angles less than 90◦, which is still a rather wide
angle. One may go further, in anticipation of exploring
the sensitivity of results to variations in the kT cut-off,
and define a cut-off angle, θmax limiting emission to an-
gles θ ≤ θmax. This cut-off criterion yields

kmax =

{
x+E+ tan(θmax/2), x = x+,

xEE sin(θmax), x = xE.
(20)

Eqs. (12) and (13) also have support for all values of
x. Nonzero weight in dNg/dx for x > 1 of course violates
energy-momentum conservation. Requiring the contin-
ued forward propagation of the parent parton leads to
an additional kT cut-off that minimally enforces energy-
momentum conservation while simultaneously enforcing

consistency with the assumption of eikonality. In light-
cone coordinates forward propagation implies p+ > p−;
in Minkowski coordinates it implies kz > 0. For the light-
cone coordinate case forward emission leads to

(1− x+)E+ > |q− k| ≈ kT , (21)

where |q| ∼ 3T < qmax =
√

6ET is small compared to
most values of |k|; for the Minkowski coordinate case
forward emission leads to

(1− xE)E > |q− k| ≈ kT . (22)

For each definition of x there are two cut-offs (e. g.
Eqs. (18) and (21) for x ≡ x+ or Eqs. (19) and (22) for
x ≡ xE); this needs to be taken into account when eval-
uating the kT integral over dNg/dxdkT . One possibility
would be to take the minimum of the two definitions;
for instance, using light-cone coordinates and taking
θmax = π/2; this would mean kmax = min(x+, 1−x+)E+.
The present implementations of DGLV and WHDG use a
smoother function, kmax = x+(1−x+)E+. Note that the
existing ASW–SH implementation [25] does not include
any large-x cut-off.
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FIG. 7: Second half of the progression from ASW–SH to the radiative piece of WHDG. The black curve in all figures represents
ASW–SH. The red curve in each figure represents the result when the next progressive change away from WHDG is removed.
To aid comparison, the result from the previous plot is shown in blue. Dots at x = 1 represent the integrated weight of dNg/dx

for x > 1. Progression proceeds as follows: (Top Left) ρ(z) = θ(L− z)θ(z)/L to ρ(z) = 2e−2z/Lθ(z)/L; (Top Right) kmax = xE
to kmax = 2x(1− x)E; (Bottom Left) Mq = 0 to Mq = µ/2; (Bottom Right) mg = 0 to mg = µ/

√
2.

One could, of course, perform a similar θmax analy-
sis for the large-x cut-off. However, one can see from
Fig. 8 that the dNg/dx distribution is actually rather in-
sensitive to this cut-off. In this sense the dNg/dxdkT dqT

integrand respects the small-x approximation rather well.
In order to illustrate the sensitivity of the single gluon

emission probability to kmax, Fig. 9 plots dNg/dxdkT for
x = 0.025, along with an illustration of three possible
cut-offs for kT :

(a) x = x+ with θmax = π/2;

(b) x = xE with θmax = π/2;

(c) x = xE with θmax = π/4.

Recall that to lowest order in collinearity, the first two
cut-offs are identical; the third is a natural O(1) variation
in the cut-off that one can use to estimate the systematic
uncertainties deriving from the collinear approximation.
Clearly the assumption of collinearity is badly violated:
for values of x ∼ µ/E, dNg/dxdkT reaches its maxi-
mum value at kT ∼ xE. For these values of x the emis-
sion spectrum is highly sensitive to the choice of kmax:
dNg/dx ∼ k2

max.

FIG. 8: Plots comparing the result for Eq. (12) with kmax =
x+E+ (black) and kmax = x+(1− x+)E+ (red) cut-offs for a
10 GeV up quark traversing a 2 fm static QGP of T = 485
MeV. Enforcing the small x approximation, and simultane-
ously enforcing energy and momentum conservation at the
level of dNg/dx, does not make a large difference to the emis-
sion spectrum. The black dot at x+ = 1 represents the inte-
grated weight of dNg/dx+ for x+ > 1 when kmax = x+E+.
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FIG. 9: Plot of dNg/dxdkT from Eq. (12) for a light quark
with all masses set to 0, E = 10 GeV, L = 5 fm, and rep-
resentative values of µ ≈ 0.46 GeV and λ ' 1.25 fm for a
medium density of dNg/dy = 1000 similar to RHIC conditions
[18]. Vertical lines depict the three values of kT discussed in
the text as possible cut-offs to enforce collinearity inEq. (12).
Note that with x = 0.025 ≈ µ/E, dNg/dxdkT is maximized
near kT ∼ kmax, completely in contradiction to the collinear
approximation.

Since the collinear approximation is so badly broken,
it is not a good approximation to take x+ ≈ xE. A mean-
ingful comparison of results, then, can come only when
the emission spectra of Eqs. (12) and (13) are plotted
with respect to the same variables. Since one is inter-
ested in a differential quantity, a Jacobian is required.
We choose to transform x+ to xE because, ultimately,
one is interested in energy loss, as opposed to the loss of
positive light-cone momentum. The transformed spec-
trum is then given by

dNJ
g

dxE
(xE) =

∫ kmax

dkT
dx+

dxE

dNg

dx+dkT

(
x+(xE)

)
, (23)

with

dx+

dxE
=

1
2

[
1 +

(
1−

( kT

xEE

)2
)−1

]
, (24)

kmax = xEE sin(θmax). (25)

Note the change in the upper limit (25) of integration in
Eq. (23). The resulting comparison of dNg/dxE is shown
in Fig. 10. Note the very large difference in the results for
the two collinearly equivalent definitions of x and that for
the result with a reduced θmax. Of course this enormous
difference implies very large systematic errors (a factor
2− 3) in the extraction of the medium parameters from
leading hadron suppression data [26].

5. Multiple emission

More explanation necessary?

FIG. 10: “Apples-to-apples” comparison of Eqs. (12) and (13)
in the massless limit and for which the x+ dependence of
Eq. (12) has been transformed into xE; see Eq. (23). Also
shown is the result when using the xE interpretation and re-
ducing θmax to π/4, a reasonable O(1) variation in the kT

cut-off.

We finally note that the usual implementation of the
Poisson convolution for multiple radiation leads to a dis-
tribution that does not conserve energy as the degrad-
ing momentum of the parent parton is not dynamically
updated. Furthermore, because generally 〈Ng〉 > 1, the
convolution almost always pushes the mean fractional en-
ergy loss 〈ε〉/E to values larger than the mean value 〈x〉
from the single emission distribution dNg/dx. Therefore,
the Poisson convolution actually enhances the sensitivity
of energy loss calculations to regions of larger x for which
the approximations are not well controlled.

[Note from BM: I do not understand the logic of the
last statement. It seems that the collinearity condition is
best satisfied for large x. Thus, which “approximations”
does the last sentence refer to?]

C. The ASW formalism

1. Overview

The ASW formalism calculates parton energy loss
based on a path-integral formalism [19, 28, 29]. The
path-integral can be evaluated in two different approxi-
mations:

1. Multiple soft scattering limit: This limit makes a
saddle-point approximation to the path integral.
For the case of infinite in-medium pathlength L,
the result coincides with the BDMPS expression for
parton energy loss [28]. For this reason, we refer to
this limit sometimes as ”BDMPS limit”.

2. Opacity expansion: This approach uses an expan-
sion of the integrand of the path integral in powers
of (ρL), where ρ is the density of scattering centers
and L is the path-length. The GLV N = 1 opacity
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result reproduces our expression [19] on the level of
the Feynman diagrams and the analytic expression
for the ω- and kT -differential gluon energy distri-
bution.

2. Energy loss probability distribution

Fig. 11 shows results from the ASW multiple soft scat-
tering limit for different values of a primary quark with
energy E and path-length L. All results have been com-
puted with αs = 0.3. First, we plot the probability
P (∆E/E) — the so-called quenching weight — that a
light quark loses a fraction of its energy. The informa-
tion about P (∆E/E) is contained in three pieces:

1. ”Untouched survival”: This is the discrete prob-
ability that a parton does not interact with a
medium of length L and that it loses no energy.
This probability is represented by a color-coded dot
at ∆E/E = −0.05.

2. ”Survival with finite energy loss”: This is the con-
tinuous probability that a parton makes it through
a medium of length L but loses a finite fraction
∆E/E during its passage. This is denoted by the
color-coded curve at finite 0 ≤ ∆E/E ≤ 1.

3. ”Death before arrival”: In general, if one shoots
a particle into a wall of thickness L, it can get
stopped on its journey before reaching the length
L. This probability is denoted by the color-coded
dot at ∆E/E = 1.05.

In general, as the average energy loss grows due to an
increase in q̂, one observes that:

(a) the probability of untouched survival decreases;

(b) the probability of survival with finite energy loss
shifts to larger values of ∆E/E;

(c) the probability of death before arrival increases.

This is seen clearly in the plots shown for P (∆E/E).
The most extreme case is that of E = 10 GeV and L = 2
fm (lower panel of Fig. 11). Requiring an energy loss of
∆E = 4 GeV in this case amounts to a greater than 40
percent probability of untouched survival but, simulta-
neously, a 30 percent probability of death before arrival.
This comes close to an all-or-nothing scenario, where a
particle either goes through without medium modifica-
tion or gets stuck, but its probability of emergence as an
object with reduced energy is relatively small.

3. Gluon radiation spectrum

We now turn to the corresponding spectra: The mul-
tiple soft scattering limit suppresses the production of
infrared gluons by a destructive interference effect. As a

FIG. 11: Probability of energy loss, see the text for expla-
nations, for a light quark of energy E = 100 GeV and path
length L = 5 fm (upper panel) and for a light quark of energy
E = 10 GeV and path length L = 2 fm (lower panel). The
legend on the plots indicate the average energy loss and the
corresponding value of the transport coefficient q̂.

consequence, all spectra are peaked at finite gluon ener-
gies. In general, the radiated gluons become harder as
one increases the average energy loss (i.e. as one increases
q̂). If the projectile energy is sufficiently large and the
in-medium pathlength is sufficiently small, then the radi-
ated gluons carry small fractions of the projectile energy.
This is the case for a projectile quark energy E = 100
GeV shown in the upper panel of Fig. 12.

However, if the projectile energy is too small, see lower
panel of Fig. 12, one faces a particular problem: One
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FIG. 12: Energy spectrum of radiated gluons, for a light quark
with energy E = 100 GeV and path length L = 5 fm (top
panel) and for a light quark with E = 10 GeV and L = 2
fm (lower panel). The legends on the plots indicate the aver-
age energy loss and the corresponding value of the transport
coefficient q̂.

calculates the radiated gluon spectrum as if the parton
would propagate through a medium of path-length L,
though with finite probability the parton does not have
sufficient initial energy to make it through L, and gets
stuck before. In the present calculational framework,
finding yield in the spectrum for ω > E, i.e., above the
kinematical boundary, signals that one has assumed that
the particle propagates through a length L though its
probability of ”death before arrival” is finite.

4. Treatment of kinematic uncertainties

This section needs re-thinking

The limitations of the high-energy eikonal approxima-
tions used in the derivation of the path-integral formalism
from which both the multiple soft scattering limit and the
opacity expansion stem, were discussed in the original
papers [19, 28, 29], together with a comparison of both
limits. These limitations and the comparison between
both approximations have been recently re-analyzed in
much detail in [26]. At this point, let us mention that
they were, together with the need of a reliable framework
for computing more differential observables like particle
correlations or jet shapes, the motivation to include finite
energy corrections in the formalism, both at the level of
the DGLAP evolution equations [30] or in the form of
Monte Carlo algorithms for final state radiation [31–34].
In this respect, it should be noted that large values of the
transport coefficient were required to reproduce RHIC
data on single particle suppression [35–40] and back-to-
back correlations [37, 40], extracted in analysis using the
ASW multiple soft scattering limit through the quench-
ing weights for different models for the medium produced
in the collisions. But similar values have been obtained
using the mentioned recent developments [30, 33] which
do conserve, by construction, energy-momentum both at
the one-splitting level and in the parton shower as a
whole. This finding confirms the validity of the ASW
formalism for phenomenological studies of jet quenching.

Here we expand on some of the statements made in
the last paragraph: It was already stated in the original
publications [41] that “ ... the BDMPS–Z formalism is
based on the assumption of small transverse gluon mo-
mentum |kT � ω while we find the main contribution
to radiative energy loss for |kT | = O(ω). Both features
question the validity of the BDMPS–Z formalism ...” The
basic observation in this work and several other early
papers [19, 28, 29] is that the calculations of quench-
ing weights P (∆E/E) involve integrals over transverse
gluon momenta

∫
dkT f(kT )[59]. If the integrand f(kT )

were known without kinematic approximations, then this
integrand would vanish in the kinematically forbidden re-
gion kT > ω, and it would approach this forbidden region
in a physically reasonable way. In the absence of any ap-
proximation one would not need to arbitrarily cut off the
kT -integral, since it is the physics of the integrand which
provides the cut-off.

In the high energy approximation |kT | � ω, however,
the integrand f(kT ) does not vanish for |kT | > ω. The
kT -integral must then be cut off ”by hand”. Technically,
the kT cut off can be varied in the ASW formalism by
varying the parameter R on the level of the quenching
weights. The early ASW works [1-3] knew about and
commented on the uncertainties arising from this kT -
integration. Several of these works also varied kinemati-
cal cuts to quantify these uncertainties. These limitations
and the comparison between different small-x approxi-
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mations have been re-analyzed recently and expanded in
much detail in [26]. This is discussed in Section IV.A of
this document.

We note, however, that strictly speaking, varying the
upper cut-off of the kT -integral does not permit to fully
quantify the theoretical uncertainties associated to the
approximation |kT � ω. This is so, since the problem
with the approximation |kT | � ω is not solved by cutting
off the integral for kT > ω. Rather, the problem remains
that the approximate evaluation of the integrand is also
unreliable in the entire physical region |kT | ∼ ω. The
proper solution to this problem is hence not an ad hoc
modification of the upper bound of the integral, but an
improved calculation of the integrand, which does not
rely on the assumption |kT | � ω. Such an improvement
is a rather automatic by-product if one models parton en-
ergy loss with Monte Carlo algorithms for final state ra-
diation [31–34]. Aside from several physics motivations,
this was one of the main technical reason for turning
towards the formulation of parton energy loss in event
generators, which do not require any approximation of
the form |kT � ω. We refer to this fact often as exact
energy-momentum conservation at each splitting.

D. The Higher-Twist (HT) approach

E. Gluon emission formalism

References are missing

MvL: Need to discuss analogy with Opacity Expansions.
The single-gluon emission kernels of the (N = 1) opacity
expansion and the Higher Twist calculation are similar,
albeit with a different behaviour at small-momemntum
exchange. In the Higher Twist formalism, this be-
haviour is regulated by a cut-off at a non-perturbative
scale µF =

√
E/L, while in the Opacity expansion, the

Debeye screening mass mD is used.
In this section, we describe the radiative part of the

higher-twist (HT) calculation as applied to the “brick
problem”. In short, the higher-twist calculation consists
of including a class of medium corrections to the process
of jet evolution in vacuum, brought about by the mul-
tiple scattering of the hard partons in a medium. It is
most straightforwardly derived to the case of single in-
clusive deep-inelastic scattering in a large nucleus, with
the nucleus playing the role of the medium. While most
scattering corrections are always suppressed by powers
of the hard scale Q2, a subset of these are enhanced by
the length of the medium and these are included in the
calculation. Thus, the expansion parameter in the HT
approach is αsq̂L/Q2 where q̂ is the transverse momen-
tum squared imparted to a single parton per unit length
and L is the length traversed by the parton.

Consider the case of deep inelastic scattering (DIS)
on a nucleon (in the Breit frame). The nucleus has
a large momentum in the positive light cone direction

A[p+, 0, 0, 0] with p+ the mean momentum of a nucleon.
The incoming virtual photon has a momentum which
may always be expressed as [−Q2/2q−, q−, 0, 0]; in the
Breit frame q− = Q/

√
2. The inclusive cross section

to produce a hard hadron, which carries a momentum
fraction z of the initial produced hard quark may be ex-
pressed in a factorized from as,

dσ

dz
=
∫

dxG(x,Q2)
dσ̂

dQ2
D(z,Q2), (26)

where, G(x) is the parton distribution function (PDF)
to obtain a hard quark in the nucleon with momentum
fraction x. In the Breit frame the momentum of the in-
coming quark is xp+ = Q/

√
2. Thus the produced quark

has an outgoing momentum q− = Q/
√

2. The produced
quark is virtual with a virtuality smaller than the hard
scale usually denoted as λQ where λ � 1. The other
two factors are the hard partonic cross section dσ̂/dQ2

and the final fragmentation function D(z,Q2). The scale
in the fragmentation function is the factorization scale
and also represents the maximum possible virtuality of
the produced hard jet. The fragmentation function at
the scale Q may be obtained from a measured fragmenta-
tion function at a lower scale using the DGLAP evolution
equations,

∂Dh
q (z,Q2)

∂ log(Q2)
=

αS(Q2)
2π

∫ 1

z

dy

y
Pq→i(y)Dh

i

(
z

y
,Q2

)
. (27)

There is an implied sum over flavors i which includes all
possible types of partons that may split off from the hard
leading quark denoted as q.

In the case of DIS on a large nucleus, the above fac-
torized form may be assumed to hold with the only
change being the replacement of the vacuum evolved frag-
mentation function with a medium modified fragmenta-
tion function (as well as a replacement of the nucleon
PDF with a nuclear PDF). The medium modified frag-
mentation function contains the usual vacuum evolution
piece Eq. (27) and a medium piece which includes both
terms which are interferences between medium induced
radiation and vacuum radiation as well as terms where
both the amplitude and the complex conjugate repre-
sent medium induced radiation. Once so factorized, the
medium modified fragmentation function can be used to
compute the single hadron inclusive cross section in any
process by simply replacing the initial state parton dis-
tribution and hard cross section by those appropriate for
the process in question.

For the Brick Challenge we ignore all the initial state
functions and hard cross sections. We assume that the
quark is produced at one edge of the brick designated
as the origin and travels in the negative light cone direc-
tion with a negative light cone momentum q−. We assign
the quark an initial virtuality Q2. Since this is not the
Breit frame in DIS there is no implied relation between
q− and Q2. The equation for the medium modified frag-
mentation function with an initial light-cone momentum
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q− and virtuality Q2, which starts at the location ζ−i and exits at ζ−f , is given as,

∂Dh
q (z,Q2, q−)|ζf

ζi

∂ log(Q2)
=

αS

2π

1∫
z

dy

y

ζf∫
ζi

dζP (y)Kq−,Q2(y, ζ)Dh
q

(
z

y
,Q2, q−y

)∣∣∣∣ζf

ζ

. (28)

In the equation above, we have dropped the light-cone (−) superscript on the positions. Note that the medium
modified fragmentation function is now, not only a function of Q2 and z but also a function of q− and ζ. The
calculation of the evolution equation now requires the evolution of a three dimensional matrix (in z, q−, ζ). The
medium kernel Kq−,Q2(y, ζ) for a quark jet is given as

Kq−,Q2(y, ζ) =
(

q̂(ζ)− (1− y)
q̂

2
+ (1− y)2q̂Q

)[
2− 2 cos

(
Q2(ζ − ζi)

2q−y(1− y)

)]
. (29)

Note: In the previous equation, the meanings of
q̂(ζ) and q̂Q need to be explained.

In the soft gluon approximation y → 1, one only keeps
the first factor of q̂ in the equation above. In this limit,
the case of a gluon medium modified fragmentation func-
tion is obtained by replacing the vacuum splitting func-
tion with the two vacuum splitting functions for a gluon:
for a gluon to two gluons and a gluon to quark anti-
quark. This is so far an unverified assumption. Even at
this level of approximation, the equations above are far
to numerically intensive to solve. One usually replaces
the position dependence with the initial position ζ → ζi.
The evolution equations now represent the evolution of
a two dimensional matrix and these represent the calcu-
lations which will be presented in this paper. A further
approximation is to also drop the energy dependence and
is sometimes presented in the literature.

Explain where the position dependence comes
from in the Brick Challenge?

The first set of plots represent the default HT calcu-
lation which is the medium fragmetation function for a
π0. The jet is assumed to have energies 20 GeV and 100
GeV and goes through a medium of length 2 fm and 5
fm. The initial virtuality of the jet for the case of 20 GeV
is set to be 100 GeV2 and for the case of 100 GeV to be
2500 GeV2.

Where are the plots ???

F. AMY and BDMPS–Z

1. AMY transport equations

The medium-induced radiative energy loss suffered by
high energy partons passing through nuclear matter was
first computed in BDMPS–Z approach [7, 11, 12, 42, 43],
in which the gluon emission probability is expressed in
terms of the Green’s function of a 2-D Schrödinger equa-
tion with an imaginary potential proportional to the

cross section of interaction with color center of quark-
antiquark-gluon system.

In the AMY approach [13, 14, 44, 45], the gluon emis-
sion rates are calculated fully at leading order in αs by
resumming an infinite number of the ladder diagrams
in the context of hard thermal loop resummed QCD.
Both approaches are valid in the multiple soft scatter-
ing limit, but differ in several essential ways: in AMY
the medium consists of fully dynamic thermal quarks
and gluons, while in BDMPS–Z the medium is treated
as a collection of static scattering centers. In BDMPS–Z
the gluon emission probability is calculated in the finite
configuration space while in AMY the radiation rate is
calculated in the momentum space. In addition, different
evolution schemes are used: Fokker-Planck equations are
solved in AMY to obtain the final parton distributions
while in practice BDMPS–Z implementation convolutes
the radiation rate with the Poisson distribution to obtain
the quenching weights.

FIG. 13: A typical diagram calculated in the AMY and
BDMPS–Z approaches.

The main assumption in these two formalisms is the
high enough temperature of the medium such that the
asymptotic freedom of the QCD makes it possible to treat
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the quark-gluon plasma within the perturbation theory.
In this case, soft exchanges between the medium and the
propagating parton dominates the radiation of a hard
collinear gluon. At the same time, the effect of multiple
collisions is reduced due to the coherence between multi-
ple soft scatterings within the formation time of the emit-
ted gluon (LPM effect). This effect makes it necessary
to resum all diagrams as depicted in Fig. 13 to calculate
the leading order gluon emission probabality/rate.

In the AMY approach, one considers a hard parton
traversing an extended medium in thermal equilibrium
with asymptotically high temperature T → ∞. Due to
the small coupling g → 0, a hierarchy of parametrically
separated scales T > gT > g2T makes it possible to con-
struct an effective field theory of soft modes (modes with
momentum |k| ∼ gT ) by summing contributions from
hard thermal loops into effective propagators and vertices
[46, 47]. The hard parton traversing a thermal QGP un-
dergoes a series of soft elastic scatterings with transverse
momentum of order ∼ gT off the thermal particles of the
medium. The differential cross section (interaction rate)
at leading order in αs is

dΓ̄el

d2q⊥
=

1
(2π)2

g2Tm2
D

q2
⊥(q2

⊥ + m2
D)

. (30)

Note that the rate has been divided by the quadratic
color Casimir CR of the parent parton, indicated by plac-
ing a bar over the rate Γel (similarly for other quantities).

These soft multiple scatterings induce collinear split-
ting of partons. The time scale over which the parton
and emitted gluon overlap is of order (g2T )−1, the same
order of magnitude as the mean free time of soft scatter-
ings. To obtain the leading-order gluon emission rates,
one must consistently take into account the multiple scat-
tering processes. Within the thermal field theory, one

essentially calculates the imaginary parts of an infinite
number of gluon self-energy ladder diagrams. The re-
summation of these ladder diagrams can be organized
into the Schwinger-Dyson type equation for the dressed
radiation vertex, as depicted in Fig. 14. The correspond-
ing integral equation is

2h = i δE(h, p, k)F(h) +
∫

d2q⊥
dΓ̄el

d2q⊥

×
[
(Cs − CA/2)[F(h)− F(h−k q⊥)]

+(CA/2)[F(h)− F(h+pq⊥)]

+(CA/2)[F(h)− F(h−(p−k)q⊥)]
]
. (31)

In the above equation, δE is the energy difference be-
tween the initial and final states,

δE(h, p, k) = Ep−k + Ek − Ep (32)

=
h2

2pk(p−k)
+

m2
k

2k
+

m2
p−k

2(p−k)
−

m2
p

2p
,

with p the incoming parton momentum and k the mo-
mentum of the radiated hard gluon. 1/δE is of order
of the formation time for the bremsstrahlung process in
the medium. The masses appearing in the above equa-
tions are the medium induced thermal masses. The 2-D
vector h is the measure of non-collinearity of the final
states, defined to be h ≡ (p× k)× e||, with e|| the cho-
sen longitudinal direction. For the case of g → qq̄, the
(Cs−CA/2) term is the one with F(h−pq⊥) rather than
F(h−k q⊥) in the above equation.

The gluon emission rate dΓ(p, k)/dk is obtained by
closing off the dressed vertex with the bare vertex in-
cluding the appropriate statistical factors,

dΓ(p, k)
dk

=
Csg

2

16πp7

1
1± e−k/T

1
1± e−(p−k)/T

×


1+(1−x)2

x3(1−x)2 q → qg

Nf
x2+(1−x)2

x2(1−x)2 g → qq̄
1+x4+(1−x)4

x3(1−x)3 g → gg

×
∫

d2h

(2π)2
2h · Re F(h, p, k) . (33)

Here Cs is the quadratic Casimir relevant for the process (CF = 4/3 for quarks or CA = 3 for gluons), and x ≡ k/p
is the momentum fraction of the gluon (or the quark, for the case g → qq̄). The subsequent multiple emissions are
treated by evolving the momentum distribution P (p) = dN/dp of the traversing hard partons in a set of Fokker-Planck
equations,

dPqq̄(p)
dt

=
∫

k

Pqq̄(p+k)
dΓq

qg(p+k, k)
dk

− Pqq̄(p)
dΓq

qg(p, k)
dk

+ 2Pg(p+k)
dΓg

qq̄(p+k, k)
dk

, (34)

dPg(p)
dt

=
∫

k

Pqq̄(p+k)
dΓq

qg(p+k, p)
dk

+Pg(p+k)
dΓg

gg(p+k, k)
dk

− Pg(p)
(

dΓg
qq̄(p, k)
dk

+
dΓg

gg(p, k)
dk

Θ(k−p/2)
)

. (35)

In the AMY approach, the medium consists of fully dynamic thermal quarks and gluons; the effect of emitting and
absorbing thermal energy are fully included in the evolution equations. In addition, the elastic energy loss due to the
recoil of the dynamical scattering centers can also been consistently included in the formalism [48, 49]. However, the
transition rates are calculated in momentum space assuming the thermodynamic limit, i.e., the high energy parton
experiences a uniform medium on the time scale of the formation time of the emitted radiation.
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FIG. 14: Diagrammatic representation of the Schwinger-Dyson equation for the emission vertices.

2. Comparison of BDMPS–Z and AMY

In the BDMPS–Z formalism, one calculates the amplitude for a quark-antiquark-gluon system evolving in the
medium without inducing inelastic reactions (following Zakharov). The general formula for the probability of the
gluon emission by a hard parton traversing the medium may be expressed as,

k
dI

dk
=

αxPs→g(x)
[x(1− x)p]2

Re
∫ ∞

0

dt1

∫ ∞

t1

dt2

(
∇b1 · ∇b2 [G(b2, t2|b1, t1)−Gvac(b2, t2|b1, t1)]

)
b1=b2=0

. (36)

Here I is the probablity of gluon bremsstrahlung from
the high energy particle, Ps→g(x) is the vacuum split-
ting function for relevant process and G(b2, t2|b1, t1) is
the Green’s function of a 2-D Schrödinger equation with
Hamiltonian

H(pb,b, t) = δE(pb)− iΓ3(b, t) . (37)

The initial condition for the Green’s function is

G(b2, t|b1, t) = δ2(b2 − b1). (38)

The kinetic term in the Hamiltonian describes the energy
difference between initial and final states, as given by
Eq.(32), with pb = h/p, and Γ3 in the potential term is
the 3-body interaction rate,

Γ3(b, t) =
1
2
CAΓ̄2(b, t) + (Cs −

1
2
CA)Γ̄2(xb, t)

+
1
2
CAΓ̄2((1− x)b, t) , (39)

where Γ2 is related to the Fourier transform of the elastic
collision rate dΓ̄el/d2q⊥ by

Γ̄2(b, t) =
∫

d2q⊥
dΓ̄el

d2q⊥

(
1− eib·q⊥

)
. (40)

Note that in the original BDMPS–Z formula, the rate Γ̄el

for soft scatterings was written as the number density
ρ of the static scattering centers in the medium times
elastic cross section σel for such scatterings. Here we
follow the notation of Arnold [50] and write BDMPS–
Z formulas more generally in terms of the rate Γ̄el for
elastic scatterings off the medium constituents. Since
the medium is treated as a collection of static scattering
centers, one replaces the denominator of Eq. (30) with
(q2

⊥ + m2
D)2 for the elastic scattering rate. Further as-

suming that the gluon emission rate is dominated by the

region b <∼ 1/mD, one may approximate the elastic rate
by

Γ̄2(b, t) =
1
4

ˆ̄qb2 , (41)

where ˆ̄q is transverse momentum squared transferred to
incident parton per unit time. Neglecting the effective
masses of the particles, the Hamiltonian takes the Har-
monic oscillator form,

H(pb,b, t) =
p2

b

2M
+

1
2
Mω2

0b2 , (42)

where

ω2
0 = −i

(1− x)CA + x2Cs

2M
ˆ̄q , (43)

and M = x(1−x)p. Making use of the oscillator Green’s
function and performing the integration over time t1 and
t2 for a brick of medium with length L, one may obtain
the BDMPS–Z formula,

k
dI

dk
=

αxPs→g(x)
π

ln | cos(ω0L)| . (44)

In practical application, one uses the infinite medium
limit of opacity expansion approach [19, 28] to calculate
the quenching weights. In the small x limit, the gluon
emission probability is independent on the incident par-
ton energy. Then one may convolute with the Poisson
distribution to compute the probability P (∆E) for the
incident parton to lose energy ∆E an incident parton to
lose energy ∆E during its passage through the medium
[51],

P (∆E) =
∞∑

n=0

e−〈I〉

n!

n∏
i=1

[∫
dki

dI

dki

]
δ(∆E −

n∑
i=1

ki) ,(45)
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where 〈I〉 =
∫∞
0

dk(dI/dk) is the mean number of radi-
ated gluon for each coherent interaction set. Note the ap-
plication of Poisson convolution could result in the “leak-
age” of the probability into the unphysical region where
the energy loss by the traversing parton is larger than
its initial energy. Practically, this leaked probability is
taken as the probability of no energy loss by the incident
parton. In contrast, AMY implements exact energy and
momentum conservation, both in the elementary process
and in the radiative cascade. In addition, the BDMPS–Z
approach treats the medium as collection of heavy static
scattering centers, therefore elastic energy loss and ab-
sorption processes are not present.

Despite these differences, it is worth noting that
Arnold has shown [50] that in the multiple soft scattering
limit the medium-dependent part for the gluon emission
rate from these two approaches are equivalent. Following
Arnold [50], we first note that the Green function only
depends on the time difference ∆t = t2 − t1 due to time
invariance. Performing the integral over t1 which gives
a factor of total time, the resulting non-vacuum part of
Eq.(36) becomes

dΓ
dk

=
αPs→g(x)

x2(1− x)2p3
(46)

× Re
∫ ∞

0

d∆t [∇b1 · ∇b2G(b2,∆t|b1, 0)]b1=b2=0 .

One may define the time-integrated amplitude

f(b) = 2i

∫ ∞

0

dt[∇b1G(b, t|b1, 0)]b1=0 , (47)

which satisfies the following equation,

−2∇bδ2(b) = Hf(b) . (48)

In terms of the amplitude f(b), the gluon emission rate
becomes

dΓ
dk

=
αPs→g(x)

x2(1− x)2p3
Re[(2i)−1∇b · f(b)]b=0 . (49)

Fourier transforming Eq. (48) from impact parameter
space to momentum space with the use of Eq.(42),
one obtains the linear integral equation [Eq.(31)], with
F(h) = pf(pb). The gluon emission rate becomes

dΓ
dk

=
αPs→g(x)

4x2(1− x)2p7

∫
d2h

(2π)2
Re[2h · F(h)] . (50)

Including the appropriate final state statistical factors,
one reproduces the AMY formula (33) for the gluon emis-
sion rate (see Appendix for further details).

IV. SYSTEMATIC COMPARISONS

A. Considered energy loss models

In this section, the multiple-soft scattering approxima-
tion is compared with the opacity expansion formalism

and the McGill AMY implementation. Specifically, the
following energy loss models are compared:

• BDMPS–Z/ASW–MS as reported in reference [28].

• ASW-SH: The single hard scattering approxima-
tion as described in [28]. It consists of an incoher-
ent superposition of a few single hard scatterings.
Originally with a fixed value for L/λ. For this work
L/λ is calculated from the temperature T in the
medium. Single gluon distribution is an analytical
expression as given in Eq. (13).

• WHDG radiative [18]: This model is based on the
GLV opacity expansion [15] and calculates the ra-
diated gluon energy starting from an analytical ex-
pression for the single gluon emission spectrum to
all orders of opacity as given in Eq. (12). For
the single gluon spectrum there is a smooth cut-
off given by the parton energy. Using the average
number of emitted gluons the P (∆E) is calculated
for a parton. The energy loss is calculated follow-
ing the DGLV formulas for radiative energy loss as
reported in appendix B of [18].

• AMY radiative: The AMY formalism based on a
thermal effective field theory approach is described
in section III F. In the results shown in this section,
the gluon splitting process, g → gg, is neglected.

B. Suppression factor in a QGP Brick

The measured hadron spectra at RHIC follow a power
law: dN/dpt ∼ p−n

T . If the energy of each hadron is
reduced by a fraction ε, the hadron spectrum after energy
loss will be:

dN

dpT
=

1
[(1− ε)pT ]n

dpT

dp′T
=

1
(1− ε)n−1pn

T

, (51)

where p′T is the momentum of the hadron after radiating
energy in the medium. Given the probability distribution
of energy loss ε the nuclear modification factor RAA can
be approximated by the weighted average energy loss:

Rn =
∫ 1

0

dε(1− ε)n−1P (ε), (52)

in which ε = ∆E/E. Because for RHIC energies the
hadron pT spectrum is approximated by a power law
spectrum with n = 6.5 for pT > 2. GeV/c [53], R7 will
be used as a proxy for RAA.

1. Comparison at fixed temperature

The different energy loss formalisms do not result in
the same suppression at equal density. This is illustrated
in figure 15(b) where the outgoing quark spectrum is
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shown for all the models with a medium temperature
T = 300 MeV. The distributions are given for two dif-
ferent bricks in which the incoming quark has initially
E = 20GeV. The bricks consist of a gluon gas, Nf = 0,
of length L = 2 fm (left panel) and L = 5 fm (right
panel). The input parameters to calculate the energy
loss in the different models depend on T and L. The
corresponding suppression factors R7 are different while
the distributions have a similar shape.

The outgoing quark spectrum is calculated using a
Poisson convolution of the single gluon spectrum for the
multiple soft scattering approximation and the opacity
expansions. This gives a finite probability to the parton
to not have any interaction with the medium which given
by the squares at zE = 1. In this case the parton does
not lose any energy. At the same medium density this
weight is roughly twice as large for the multiple soft scat-
tering approximation as for the opacity expansions for a
brick of L = 5 fm, cf. the right panel of figure 15. On the
other hand, the gluons that are radiated are softer for
the opacity expansions than for ASW–MS. For a brick of
L = 2 fm and a temperature of T = 300 MeV the parton
hardly loses any energy in all models, R7 > 0.8 for all
models, and the picture is dominated by the very large
discrete weights.

In the left panel of figure 15 the single gluon energy
spectra are shown. For ASW–MS and ASW–SH the ther-
mal quark and gluon mass are set to zero while in WHDG
radiative those masses are included. Including the ther-
mal masses results in less soft gluon radiation which can
be seen comparing the ASW–SH and WHDG radiative
curves at small ω. Another difference as discussed in
Section III B is the cut-off kmax on the energy transfer
to the gluon. For ASW–MS and ASW–SH it is possi-
ble that a radiated gluon has larger momentum than the
initial energy of the incoming quark because there is no
kinematical bound on the transferred energy ω the gluon
is carrying away.

The only kinematical constraint in ASW–MS and
ASW–SH is the dimensionless parameter R(R̄) constrain-
ing kT < ω which prohibits large angle radiation but
there is no dependence on the energy of the parton. At
small x the kinematical boundary kT < ω is important
while at large x the important constraint is ω < E. In
the WHDG radiative formalism this is regulated by an
additional kinematical bound which prevends the par-
ton from going backward in case the transferred energy
fraction is large x > 0.5. This corresponds with the sec-
ond upper limit in the GLV energy loss formalism [16]:
k2
max = Min [4E2x2, 4E2x(1 − x)], which in WHDG ra-

diative is implemented as kmax = 2Ex(1 − x). So there
is a factor 2 difference in the cut-off at small x which re-
sults in more soft gluon radiation for WHDG. This is not
observed in Fig. 15(a) because of the earlier mentioned
difference in the inclusion of mass of the quark and gluon.

2. Suppression at fixed transport coefficient q̂

Figure 16 shows the dependence between suppression
factor R7 on q̂ given by Eq. (8). From this figure can
be seen that both opacity expansion formalisms lose
more energy at the same medium density (same q̂) com-
pared to the multiple soft scattering approximation. The
AMY formalism generates more energy loss compared to
all the other models at the same medium density. To
reach a similar suppression as measured at RHIC [54–56],
R7 ≈ 0.25, the required densities for the different models
differ up to a factor 9 in q̂. For a brick of L = 2 fm
R7 ≈ 0.25 is reached at q̂ = 17.8 GeV2/fm for WHDG
versus q̂ = 8.86 GeV2/fm for ASW–SH while the the
multiple-soft scattering approximation needs q̂ = 23.2
GeV2/fm to reach the same suppression. In the AMY for-
malism only q̂ = 2.7 GeV2/fm is required. For a brick of
L = 5 fm the required values are q̂ = 0.4, 0.95, 1.23, and
2.11 GeV2/fm, respectively, for AMY radiative, ASW–
SH, WHDG radiative and ASW–MS for a suppression
factor R7 = 0.25.

In Tables II and III different characterics like input
variables and gluon densities of all the considered en-
ergy loss models are listed. The larger energy loss in the
opacity expansion formalism than for ASW–MS is mainly
caused by the smaller discrete weights of the energy loss
probability distribution under the same medium condi-
tions. In the AMY formalism an infinite medium is as-
sumed which removes the destructive interference of the
vacuum radiation with the medium induced gluon radia-
tion resulting in much larger energy loss under the same
medium conditions. In the AMY formalism there is no
interference with the vacuum radiation implemented at
all because it does not exist for an infinite long medium.

3. Comparison at fixed suppression R7

In Fig. 17 the inclusive gluon spectra for the bricks
of different length are shown. These spectra correspond
to a suppression factor R7 = 0.25, corresponding to the
medium densities reported in TableII and shown Fig. 16.
The single gluon spectrum WHDG does not have a tail
because in the WHDG calculation the single gluon spec-
trum is modified by a factor which smoothly cuts off the
spectrum at the energy of the incoming quark E = 20
GeV. For the AMY gluon spectrum only q → q + g split-
tings are included. In the AMY formalism it is not pos-
sible to distinguish between thermal and radiated gluons
for ω < 2 GeV which is why in this region for AMY the
gluon spectrum is not shown. We note that the ASW–
MS single gluon spectrum at fixed suppression is harder
than that obtained in the opacity expansions.

Figure 18 shows the final quark energy spectrum as
function of zE = 1 − ε for the two bricks of different
lengths and R7 = 0.25. The probability that a parton
is absorbed in the medium is indicated by the squares
at zE = 0. In this case the parton loses more energy
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(a) (Single) Gluon Distribution (b) Outgoing quark Spectrum

FIG. 15: The (single) gluon distribution and final quark energy spectrum as function of zE = 1− ε. All models have the same
input temperature T = 300 MeV. The squares at zE = 0 indicate the probability that a quark is absorbed and at zE = 1
the probability that a quark does not interact with the medium. Solid blue squares: BDMPS–Z/ASW–MS. Open red squares:
WHDG radiative. Solid red squares: ASW–SH.

(a) L = 2 fm. (b) L = 5 fm.

FIG. 16: Correlation between R7 and q̂ for a primary quark with E = 20 GeV for different energy loss formalisms. The
horizontal black dashed line indicates R7 = 0.25.

than it initially has and gets absorbed in the medium.
This happens if the energies of the multiple radiated glu-
ons adds up to a total energy loss that exceed the initial

energy of the parent parton. Since in WHDG radiative
there is a large x cut-off, this probability is smaller than
in ASW–MS and ASW–SH. The corresponding probabil-



23

R7 = 0.25 T (MeV) q̂ (GeV2/fm) ωc or ω̄cL/λ (GeV) R or R̄L/λ L/λ mD (GeV)

ASW–MS 1030 23.2 236 2393 — —

L = 2 fm WHDG 936 17.8 105 1063 6.25 1.82

ASW–SH 727 8.86 49.0 500 4.85 1.41

AMY 480 2.7 — — — —

ASW–MS 434 2.11 134 3401 — —

L = 5 fm WHDG 358 1.23 36.5 925 5.97 0.69

ASW–SH 326 0.95 27.6 702 5.44 0.63

AMY 235 0.4 — — — —

TABLE II: Values of the model parameters required to reach the typical suppression of R7 = 0.25.

ity for losing no energy at all, a discrete weight for all
models, is given by the squares at zE = 1.

The discrete and the absorption probabilities of the
multiple-soft scattering approximation are larger than for
the opacity expansions. It seems that the continuous part
of the energy loss probability distribution is more relevant
in the opacity expansion.

In the AMY energy loss kernel a lot of soft gluons are
radiated which is consistent with the gluon distribution
in Fig. 17. In the final quark spectrum a peak at zE = 0.9
is observed for AMY which corresponds to one radiated
gluon of 2 GeV or to multiple gluons of energies lower
than 2 GeV. The latter is most likely the case, but it falls
into the region where we cannot distinguish the radiated
gluons from the thermal gluons in the AMY formalism.

When all the models are tuned to a fixed amount of
suppression R7, the radiated gluon spectra look different.
From the single gluon radiation spectra shown in Fig. 17
the average number of emitted gluons can be obtained
by integrating the gluon spectrum over the gluon energy
ω:

〈Ng〉 =
∫

dω
dI

dω
. (53)

Note that this determines the discrete weight of the prob-
ability for no energy loss:

p0 = e−〈Ng〉. (54)

The probability for complete absorption of the parton is
then given by

p1 =
∫ ∞

E

d(∆E) P (∆E), (55)

where E is the energy with which the parent parton en-
ters the brick. The total average energy loss for the in-
coming parton is calculated from the energy loss proba-
bility distribution P (∆E):

〈∆E〉 =
∫ E

0

d(∆E) P (∆E), (56)

for which only the surviving partons are taken into ac-
count.

All the mentioned values characterizing the different
models are listed in Table III. The Table shows that
the same suppression factor R7 does not imply that the
mean energy loss is the same for all models. We also
note that the number of radiated gluons differs signifi-
cantly between the models at fixed temperature. On the
other hand, when the suppression factor R7 is fixed, the
number of radiated gluons is similar.

4. Correlation of q̂ and L

Figure 19 shows contours for different suppression fac-
tors R7 as function of the in-medium path length L and
the transport coefficient q̂. Since the typical size of a nu-
cleus is L ≈ 5 fm, the relevant path lengths are L <∼ 5.
In this region a relatively small difference in L results in
a very large difference in q̂ for a fixed value of R7. A
rescaling in L is much more efficient than a rescaling in
the medium density because the energy loss scales with
q̂L2. To achieve a significant difference in the fraction of
lost energy a large step in medium density is needed.

The WHDG radiative model requires larger combina-
tions of q̂ and L than ASW–SH in order to achieve the
same suppression factor. This is due to the smooth cut-
off in the single gluon spectrum at the quark energy
(E = 20 GeV) in the WHDG model, cf. Fig. 16. For
small q̂ and small L this is not a dominant effect because
the tail of the single gluon energy distribution is shorter
which makes the single gluon spectra of ASW–SH and
WHDG and thus the energy loss probability distribution
less different. This is also represented in the crossing
points at small q̂ of the two opacity expansion curves in
Fig. 16.

The multiple soft scattering approximation requires
larger values for q̂ and L than both opacity expansion
formalisms in order to achieve the same fraction of energy
loss. The region in q̂ and L in which a parton survives
is more limited for the opacity expansion than for the
multiple soft scattering approximation. This is mainly
due to the larger probability for losing no energy in the
multiple-soft approximation at the same medium density.
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T = 300 MeV R7 = 0.25

〈Ng〉 〈∆E〉 p0 p1 〈Ng〉 〈∆E〉 p0 p1

ASW–MS 0.17 0.3 0.84 0.01 1.58 5.9 0.2 0.46

L = 2 fm WHDG 0.48 1.24 0.62 0.00 1.94 7.7 0.14 0.14

ASW–SH 0.25 0.93 0.78 0.03 1.92 6.9 0.15 0.35

ASW–MS 0.12 3.95 0.31 0.08 1.83 6.4 0.16 0.33

L = 5 fm WHDG 1.96 5.63 0.14 0.05 2.44 7.3 0.09 0.11

ASW–SH 2.09 5.76 0.12 0.2 2.47 6.7 0.08 0.26

TABLE III: Table of different variables for the different energy loss models. Left columns: for T = 300 MeV for all models.
Right columns: corresponding medium properites required to reach the typical suppression R7 = 0.25.

5. Baseline Plots

This section will present and discuss the plots gener-
ated by the different formalisms for various parameters of
the QGP Brick challenge. For each model, we will show
the following six plots:

1. The inclusive gluon spectrum dNg/dxE for the fol-
lowing parameters: primary parton = quark, L = 2
fm, E = 20 GeV, R8 = 0.25;

2. The inclusive gluon spectrum dNg/dxE for the fol-
lowing parameters: primary parton = quark, L = 5
fm, E = 20 GeV, R8 = 0.25;

3. The final spectrum dNq/dxE for the following pa-
rameters: primary parton = quark, L = 2 fm,
E = 20 GeV, R8 = 0.25;

4. The final spectrum dNq/dxE for the following pa-
rameters: primary parton = quark, L = 5 fm,
E = 20 GeV, R8 = 0.25;

5. For each of the models, the range of correlation
between R8 and q̂ for a primary quark and L = 2
fm, E = 20 GeV;

6. For each of the models, the range of correlation
between R8 and q̂ for a primary quark and L = 5
fm, E = 20 GeV.

For (1–4), the inclusive spectrum of gluons (quarks) at
the end of the brick should be plotted. For gluons, this
is the spectrum calculated from the “elementary” emis-
sion formula; for quarks, this requires the Poisson (or
other) convolution with the probabilistic distribution of
scatterers. [This interpretation needs to be confirmed.]
For AMY, both dNg/dxE and dNq/dxE are obtained by
solving the rate equations.

For (5) and (6), the whole range of correlation should
be shown, when all other parameters of the jet quenching
model are varied, keeping R8, L, and E fixed.

6. WHDG Brick Results

In this subsection we compile the WHDG model results
for the QGP brick problem.

V. CONCLUSIONS AND OUTLOOK

This section will summarize the limitations of the va-
lidity of the various first-generation formalisms and give
estimates of the inherent uncertainties of their predic-
tions that limit the current theory–data comparison. The
section will also describe the minimal requirements for all
second-generation approaches, which hope to avoid the
most serious of these limitations.

APPENDIX A: AMY VS. BDMPS–Z

About the connection between AMY and BDMPS–Z,
the starting point is Eq. (36). The connection between
(50) and (44) is not that obvious since in (50) the rate
is used and written in momentum space with infinite
medium length limit taken, while (44) is written in co-
ordinate space for a finite medium length. To go from
probability to rate, one may apply the large-L limit of
Eq. (44),

ln | cos ω0L| ∼ |ω0|L/
√

2, (A1)

and move L to the left-hand side. Although (50) is writ-
ten in momentum space, it is just the Fourier transform of
(49), with the redefinition of F (h), which gives p7 from
p3. Equation (49) can be directly related to our start-
ing point (36), with a new definition of f(b) in terms of
the Green function, so the factor 1/x2(1 − x)2/p2 from
Eq. (36) still survives. Note ω = k = xp has been in-
serted on the right- hand side of (49), thus x in xP (x)
gets canceled and there is an extra p in the denominator.
In fact,

Re[(2i)−1∇b · f(b)]b=0 (A2)

or
∫

dhRe[2h ·F (h)] with the above mentioned extra fac-
tors in Eqs. (49) and (50) correspond to ln | cos(ω0L)|/L
in Eq. (44). Although it is not a single-step calculation
from (36) to (44), the cancellation of this extra factor
can be easily understood by noting that the Green func-
tion of the hamonic oscillator is dependent on the mass
M = x(1−x)p, and finally the factor M2 = x2(1−x)2p2

comes out of the expression

[∇b2∇b1G(b, t|b1, t1)]b1=0,b2=0. (A3)
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FIG. 17: The inclusive gluon spectrum for quarks with E = 20 GeV and for path-lengths L = 2 fm (left panel) and L = 5 fm
(right panel)..

FIG. 18: The final quark energy spectra as function of zE = 1 − ε and for path-lengths L = 2 fm (left panel) and L = 5
fm (right panel). All models are scaled to the same suppression R7 = 0.25. The squares at zE = 0 indicate the probability
that a quark is absorbed and at zE = 1 the probability that a quark does not interact with the medium. Solid blue squares:
BDMPS-Z/ASW–MS. Open red squares: WHDG rad. Solid red squares: ASW–SH.
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FIG. 19: Transport coefficent as function of in-medium path
length for BDMPS-Z/ASW-MS (solid lines), WHDG radia-
tive (dashed dotted lines) and ASW-SH (dashed lines) energy
loss models. The lines represent isolines from brick calcula-
tions for R7 = 0.05 (green), 0.15 (red), 0.25 (blue) and 0.45
(black). This is for quarks with E = 20 GeV.

Finally performing the time integrations, one arrives at
Eq. (44).
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